

Measurement of Λ_b Branching Ratios

in Modes Containing a Λ_c

University of Pennsylvania

Johns Hopkins University Yi Le, Bruce Barnett,

Why are the Λ_b branching fractions interesting?

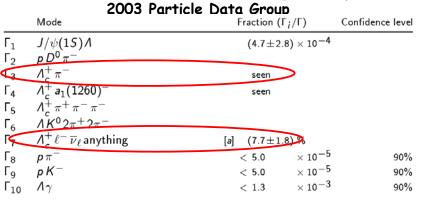
- Little is known about the properties of b-baryons.
- \triangleright Measurement of Λ_{h} branching fractions provides a way to test Heavy Quark Theory.
- Currently the b-baryons are only produced at the Tevatron.

Tevatron luminosity increase + Silicon Vertex Trigger = large $\Lambda_{
m b}$ sample

Why measure the ratio of branching fractions?

- We measure the ratios of branching fractions in kinematically similar decay modes.
- Same triggers are used both for the signal and normalization modes.

Systematic errors from the acceptance, trigger and reconstruction efficiency cancel.

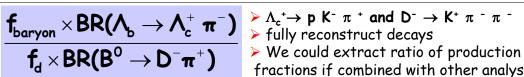

What ratios do we measure?

$$f_{\text{baryon}} \times \text{BR}(\Lambda_b \to \Lambda_c^+ \pi^-) / f_d \times \text{BR}(B^0 \to D^- \pi^+) \quad \text{and} \quad \text{BR}(\Lambda_b \to \Lambda_c^+ \mu^- \nu) / \text{BR}(\Lambda_b \to \Lambda_c^+ \pi^-)$$

Both data are collected from the two-track trigger.

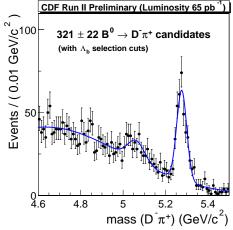
Two-track trigger: a trigger that requires a pair of opposite-charged tracks with 120 μ m \leq impact parameters \leq 1 mm, transverse momentum ≥ 2 GeV/c, scalar sum of the transverse momenta ≥ 5.5 GeV/c, $2 \leq$ angle between two tracks ≤ 90 degrees, the 2-D distance between the beam spot and the intersection point of two tracks \geq 200 μm .

How do we measure the branching fraction? $\Rightarrow \sigma_b X f_{u.d.s.barvon} X BR X \epsilon = N_{signal}$


What do we know about Λ_b decays?

[a] Not a pure measurement. See note at head of Λ_b^0 Decay Modes.

: b-quark production cross section >f_{u,d,s,baryon}: probability for the b-quark to hadronize to B_{u,d,s, baryon}


: total reconstruction efficiency

: measured event yield

- fractions if combined with other analysis
- \triangleright large uncertainty from BR($\Lambda_c \to pK\pi$)

Normalization Mode

The data are fitted with a signal Gaussian, a satellite Gaussian and a broad Gaussian (background). $\chi^2/N=0.92$

Signal Mode

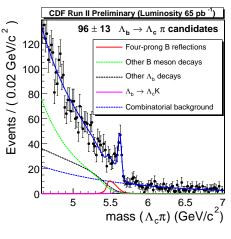


Figure 1: Reconstructed $B^0 \to D^-\pi^+$, $D^- \to K^+\pi^-\pi^-$. Figure 2: Reconstructed $\Lambda_b \to \Lambda_c\pi^-\Lambda_c \to pK\pi$. The data are fitted with a Gaussian (signal). The background shape is obtained from the Monte Carlo. $\chi^2/N=167/116$ There are two sources of backgrounds: 1. combinatorial 2. reflections. See below

Sources of reflections in $\Lambda_b \to \Lambda_c \pi$

- Four-prong B meson decays and all the other B meson decays
- $ightharpoonup \Lambda_b \to \Lambda_c K$ and other Λ_b decays
- \triangleright Normalized the reflections with the measured $\mathsf{B}^0 \to \mathsf{D}^-\pi^+$ yield in the Λ_h mass window, production fractions and relative BR of four-prong to other B decays Table 1: Efficiency Ratio

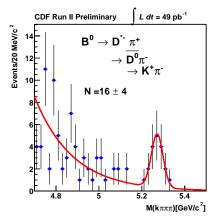
Efficiency ratio $\varepsilon(\Lambda_b)/\varepsilon(B^0)$

Systematic uncertainties

	$ \epsilon_{B^0 o D^-\pi^+}/\epsilon_{\Lambda_b o \Lambda_c^-\pi^+} $
$\epsilon_{Trigger}$	1.30 ± 0.01
ϵ_{Reco}	0.96 ± 0.01
ϵ_{Ana}	0.96 ± 0.01
ϵ_{Tot}	1.20 ± 0.02

Table 2: Summary of Systematics

	central value	variation	(%) change
B^0 lifetime (μ m)	462	457-467	±0
Λ_b lifetime (μ m)	369	345-393	+4 -5
Λ_c Dalitz structure	non-resonant		+1
$MC P_T$ spectrum			+1
Λ_b polarization	0	±1	±7
XFT	2 miss	1 miss	+3
ϕ efficiency			+3
subtotal			±9
Fit model (B^0)			±6
Fit model (Λ_b)			±8
$BR(\Lambda_c^+ \to pK^-\pi^+)$			±27
$\overline{BR(D^- \to K^+\pi^-\pi^-)}$			±27


We measure

$$\frac{f_{\text{baryon}} \times BR(\Lambda_b \to \Lambda_c^+ \pi^-)}{f_d \times BR(B^0 \to D^- \pi^+)} = 0.66 \pm 0.11 \text{(stat)} \pm 0.09 \text{(syst)} \pm 0.18 \text{(BR)}$$

BR($\Lambda_b \rightarrow \Lambda_c^+ \ \mu^- v$) BR($\Lambda_b \rightarrow \Lambda_c^+ \pi^-$)

- There are backgrounds from the feed-down of excited charm, other Bhadrons and fake muons. A slightly different formula: $R_{BR} = R_{\epsilon} \times (R_{vield} - R_{physics} - R_{fakeu})$
- $ilde{}$ We choose one control sample: $\mathsf{B}^0 o\mathsf{D}^\star\pi$ and $\mathsf{B}^0 o\mathsf{D}^\star\mu
 u$ to understand the backgrounds and systematic uncertainties.

Normalization Mode

Figure 3: Reconstructed $B^0 \rightarrow D^*\pi$, Data are fitted with a single Gaussian (signal) and a exponential background. $\chi^2/N=29.26/22$

Signal Mode

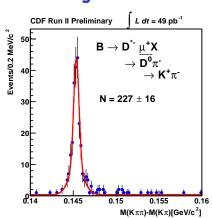
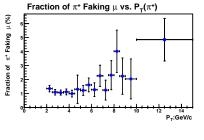
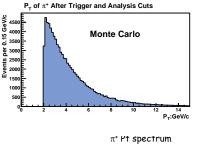




Figure 4: Reconstructed $B^0 \rightarrow D^* \mu \nu$, Data are fitted with double Gaussian (signal) and a constant background. $\chi^2/N=21.11/31$

Physics backgrounds from the feed-down of excited D mesons

Physics backgrounds are estimated from predicted branching ratios and the efficiencies from the Monte Carlo. Backgrounds contributing < 1% are not included.

1 **2** 3 85%

112040	222 (70)
$B^0 o D^{*-}\mu^+\nu$	5.53±0.23
$B^+ ightarrow \overline{D_1^0} \mu^+ \nu$	0.56±0.16
$\hookrightarrow D^{*-}\pi^{+}$	66.67±?
$B^+ ightarrow \overline{D_1^{0\prime}} \mu^+ u$	0.37±?
$\hookrightarrow D^{*-}\pi^{+}$	66.67±?
$B^+ \rightarrow D^{*-}\pi^+\mu^+\nu$	0.20±?
$B^0 o D^{*-} au^+ u$	1.60±?
$\hookrightarrow \mu^+ \nu$	17.37±0.06
$B^0 o D_1^- \mu^+ \nu$	0.56±?
$\hookrightarrow D^{*-}\pi^0$	33.33±?
$B^0 ightarrow D_1^{-\prime} \mu^+ u$	0.37±?
$\hookrightarrow D^{*-}\pi^0$	33.33±?
$B^0 \to D^{*-} \pi^0 \mu^+ \nu$	0.100±?

Fake muons from the B hadronic decays

Backgrounds from fake muons are estimated by weighting the K/π Pt spectra from $B_{mix} \rightarrow D^*X_{hadron}$ Monte Carlo by the measured muon fake rate.

See Figure 5. Systematic

Note: The systematic error from the unmeasured BR is calculated by assigning 5% uncertainty to the charm decays and 100% uncertainty to the B decays.

Table 4. Summer CDF Internal Systematics: $\sigma_{R_{BR}}$ ± 0.22 Fake μ Rate $P_T(B^0)$ Spectrum uncertainties Total External Systematics from Measured BR: $\sigma_{R_{BR}}$ $B_d \rightarrow D^{*-}\pi^+$ $B^+ \to \overline{D^0_1} \mu^+ \nu$ $B_{mix} \rightarrow D^{*-}X$ ± 0.17 ± 0.03 ± 0.46 External Systematics from Unmeasured BR: $\sigma_{R_{BR}}$ ± 1.09

Table 4: Summary of Systematics

Result agrees with 2003 PDG within 0.4σ . \Rightarrow proceed with Λ_b analysis

We measure

 $\frac{\text{BR}(\text{B}^0 \to \text{D}^{*-}\mu^+ \text{v})}{\text{BR}(\text{B}^0 \to \text{B}^{*-}\mu^+ \text{v})} = 22.9 \pm 7.1 \text{(stat)}_{-0.8}^{+1.3} \text{(internal sys.)} \pm 0.5 \text{(measured BR)} \pm 1.1 \text{(unmeasured BR)}$